Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

### 1-Acetonyl-4-(2,5-dimethyl-4*H*-1,2,4triazol-4-yl)-3-(2-thienylmethyl)-1*H*-1,2,4-triazol-5(4*H*)-one

# Reșat Ustabaș,<sup>a</sup>\* Ufuk Çoruh,<sup>b</sup> Kemal Sancak<sup>c</sup> and Esra Demirkan<sup>c</sup>

<sup>a</sup>Anatolian Trade High School, Merzifon 05300, Amasya, Turkey, <sup>b</sup>Department of Computer Education and Instructional Technology, Educational Faculty, Ondokuz Mayıs University, 55200 Atakum-Samsun, Turkey, and <sup>c</sup>Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, 61080 Trabzon, Turkey Correspondence e-mail: rustabas@omu.edu.tr

```
Received 20 June 2007; accepted 3 July 2007
```

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.033; wR factor = 0.097; data-to-parameter ratio = 13.6.

The thiophene ring of the title compound,  $C_{14}H_{16}N_6O_2S$ , is disordered over two positions, with a site-occupancy ratio of approximately 5:4, corresponding to rotation of approximately  $180^{\circ}$  about the single C–C bond. Intermolecular C–H···N and C–H···O interactions stabilize the crystal structure.

#### **Related literature**

For related literature, see: Chai *et al.* (2003); Er-Rahimini & Mornet (1992); Ichikawa *et al.* (2001); Jenkins *et al.* (1989); Kim *et al.* (2003); Nakib *et al.* (1994); Sancak *et al.* (2005); Tsuda *et al.* (2004); Ueda (2003); Zhu *et al.* (2000); Çoruh *et al.* (2003).



#### Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{16}N_6O_2S\\ M_r = 332.39\\ Monoclinic, Cc\\ a = 21.1928 \ (16) \ \text{\AA}\\ b = 9.6058 \ (6) \ \text{\AA}\\ c = 8.3020 \ (7) \ \text{\AA}\\ \beta = 106.696 \ (6)^\circ \end{array}$ 

 $V = 1618.8 (2) \text{ Å}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 0.22 \text{ mm}^{-1}$  T = 293 (2) K $0.30 \times 0.20 \times 0.15 \text{ mm}$ 

#### Data collection

| Bruker SMART CCD area-detector | 3357 independent reflections           |
|--------------------------------|----------------------------------------|
| diffractometer                 | 3185 reflections with $I > 2\sigma(I)$ |
| Absorption correction: none    | $R_{\rm int} = 0.039$                  |
| 9238 measured reflections      |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.033$ | H-atom parameters constrained                               |
|---------------------------------|-------------------------------------------------------------|
| $wR(F^2) = 0.097$               | $\Delta \rho_{\text{max}} = 0.15 \text{ e} \text{ Å}^{-3}$  |
| S = 1.06                        | $\Delta \rho_{\text{min}} = -0.18 \text{ e} \text{ Å}^{-3}$ |
| 2257 whentions                  | Absolute attractions Floads (1082)                          |
| 246 parameters                  | 1644 Friedel pairs                                          |
| 179 restraints                  | Flack parameter: -0.02 (8)                                  |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                          | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$            | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------------|--------------|-------------------------|-------------------------|--------------------------------------|
| $C22 - H22B \cdots N2^{i}$                                | 0.96         | 2.56                    | 3.352 (3)               | 140                                  |
| $C41 - H41A \cdots N3^{n}$<br>$C43 - H43 \cdots O1^{iii}$ | 0.97<br>0.93 | 2.32<br>2.49            | 3.287 (3)<br>3.414 (10) | 178<br>174                           |
| $C44' - H44' \cdots O2^{iii}$                             | 0.93         | 2.46                    | 3.162 (14)              | 132                                  |
| $C51 - H51A \cdots O2^{iv}$                               | 0.97         | 2.49                    | 3.318 (2)               | 143                                  |

Symmetry codes: (i)  $x, -y + 1, z - \frac{1}{2}$ ; (ii)  $x, -y + 1, z + \frac{1}{2}$ ; (iii)  $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$ ; (iv)  $x, -y + 2, z - \frac{1}{2}$ .

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Dr Sean Parkin, Physical Chemistry Director, X-ray Facility, Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2184).

#### References

- Bruker (1997). *SMART* (Version 5.044) and *SAINT* (Version 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chai, B., Quin, X., Cao, S., Liu, H. & Song, G. (2003). ARKIVOC, 11, 141–145. Çoruh, U., Ustabaş, R., Sancak, K., Şaşmaz, S., Ağar, E. & Kim, Y. (2003). Acta
- *Cryst.* E**59**, 01277–01279.
- Er-Rahimini, A. & Mornet, R. (1992). J. Heterocycl. Chem. 29, 1561-1566.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ichikawa, T., Kitazaki, T., Matsushita, Y., Yamada, M., Hayaski, R., Yamaguchi, M., Kiyota, Y., Okonogi, K. & Itoh, K. (2001). *Chem. Pharm. Bull.* **49**, 1102–1108.
- Jenkins, T. C., Stratford, I. J. & Stephens, M. A. (1989). Anticancer Drug. Des. 4, 145–160.
- Kim, H., Kumar, P., Laughlin, M., Hilbert, M. J., Indelicato, S. R. & Lim, J. (2003). J. Chromatogr. A, 987, 243–248.
- Nakib, A. T., Meegen, J. M. & Burke, L. M. (1994). J. Chem. Res. (S), pp. 170– 171.
- Sancak, K., Çoruh, U., Ünver, Y. & Vázquez-López, E. M. (2005). Acta Cryst. E61, 01785–01787.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tsuda, M., Itoh, H. & Kato, S. (2004). Pest Manag. Sci. 60, 881-886.
- Ueda, Y. (2003). Bioorg. Med. Chem. Lett. 13, 3669-3672.
- Zhu, D.-R., Xu, Y., Liu, Y.-J., Song, Y., Zhang, Y. & You, X.-Z. (2000). Acta Cryst. C56, 242–243.

Acta Cryst. (2007). E63, o3443 [doi:10.1107/S160053680703231X]

#### 1-Acetonyl-4-(2,5-dimethyl-4H-1,2,4-triazol-4-yl)-3-(2-thienylmethyl)-1H-1,2,4-triazol-5(4H)-one

#### R. Ustabas, U. Çoruh, K. Sancak and E. Demirkan

#### Comment

In a continuing search for pharmacologically active, 1,2,4-triazol and 1,2,4-triazol-5-one compounds, it has been found that most azole fungicides have been developed for diseases of cereal crops; examples include fluconazole (Ichikawa *et al.*, 2001), ravuconazole (Ueda, 2003) and posaconazole (Kim *et al.*, 2003). Moreover, 1,2,4-triazole derivatives have broad-spectrum biological effects, such as insecticidal (Tsuda *et al.*, 2004), herbicidal (Chai *et al.*, 2003), anticonvulsant (Er-Rahimini & Mornet, 1992), antitumor (Nakib *et al.*, 1994) and plant growth regulatory activities (Jenkins *et al.*, 1989).

The title compound, (I), consists of a triazole ring with an acetonyl group substituted at atom N5, a thienylmethyl group substituted at C4, a 1,2,4-triazole ring substituted at N4 atom and an oxo O atom at C3 (Fig. 1). The C1=N2 bond length, 1.298 (3) Å, is a little longer than some values reported in the literature [1.288 (3) Å in  $C_{16}H_{28}N_6O_2$  Çoruh *et al.*, 2003) and 1.267 (2) Å in 4-(4-hydroxybenzylidenamino)-4*H*-1,2,4-triazole hemihydrate (Zhu *et al.*, 2000)]. In the central 1,2,4-triazole ring, atoms N2 and N3 have no substituents and the N2—N3 bond length, 1.398 (3) Å, is essentially identical to that [1.403 (8) Å] reported for a similar compound (Sancak *et al.*, 2005). Atom C4 has a trigonal configuration, the sums of the three bond angles around them being 359.99 (13)°.

The thiophene ring is disordered over two positions, corresponding to rotation of approximately 180° about the single C41—C42 bond, with a major-minor ratio of 55.9 (3):44.1 (3). The crystal structure of (I) is stabilized by two C—H···N and five C—H···O intermolecular hydrogen bonds (Table 1).

#### **Experimental**

4-(3,5-Dimethyl-4H-1,2,4-triazol-4-yl)-3-(2-thienyl methyl)-1H-1,2,4-triazol-5(4H)-one (0.001 mol) was refluxed with sodium metal (0.001 mol) in absolute ethanol (50 ml) for 1 h. Chloroacetone (0.001 mol) was added and the solution refluxedfor 8 h. The resulting solution was filtered and then evaporated under reduced pressure. The solid residue was crystallizedfrom absolute ethanol-diethylether (1:4) (yield 67%; m.p. 493–494 K).

#### Refinement

The thiophene ring is disordered over two positions about the C41—C42 bond, with major:minor ratio of 55.9 (3):44.1 (3). The geometry of these disordered components were restrained to be similar (SAME in *SHELXL*). The rigid bond and similar displacement parameter restraints (DELU and SIMU, respectively) were applied for the atoms involved. All H atoms were positioned geometrically [C—H = 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (methylene)] and treated as riding on their parent atoms, with  $U_{iso}(H) = 1.13U_{eq}(aromatic C)$ ,  $1.5U_{eq}(methyl C)$  and  $1.2U_{eq}(methylene C)$ .

### Figures



Fig. 1. An *ORTEP* drawing of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Both disorder components are shown.

#### 1-acetonyl-4-(2,5-dimethyl-4H-\ 1,2,4-triazol-4-yl)-3-(2-thienylmethyl)-1H-1,2,4-triazol-5(4H)-one

| Crystal data                    |                                              |
|---------------------------------|----------------------------------------------|
| $C_{14}H_{16}N_6O_2S$           | $F_{000} = 696$                              |
| $M_r = 332.39$                  | $D_{\rm x} = 1.364 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, Cc                  | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: C -2yc             | Cell parameters from 3185 reflections        |
| <i>a</i> = 21.1928 (16) Å       | $\theta = 2.4 - 27.1^{\circ}$                |
| <i>b</i> = 9.6058 (6) Å         | $\mu = 0.22 \text{ mm}^{-1}$                 |
| c = 8.3020 (7)  Å               | T = 293 (2) K                                |
| $\beta = 106.696 \ (6)^{\circ}$ | Prism, colourless                            |
| $V = 1618.8 (2) \text{ Å}^3$    | $0.30\times0.20\times0.15~mm$                |
| Z = 4                           |                                              |

#### Data collection

| Bruker SMART CCD area-detector<br>diffractometer | 3185 reflections with $I > 2\sigma(I)$ |
|--------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube         | $R_{\rm int} = 0.039$                  |
| Monochromator: graphite                          | $\theta_{\text{max}} = 27.1^{\circ}$   |
| T = 293(2)  K                                    | $\theta_{\min} = 2.4^{\circ}$          |
| $\varphi$ and $\omega$ scans                     | $h = -27 \rightarrow 27$               |
| Absorption correction: none                      | $k = -12 \rightarrow 12$               |
| 9238 measured reflections                        | $l = -10 \rightarrow 10$               |
| 3357 independent reflections                     |                                        |

#### Refinement

| Refinement on $F^2$             | Hydrogen site location: inferred from neighbouring sites                           |
|---------------------------------|------------------------------------------------------------------------------------|
| Least-squares matrix: full      | H-atom parameters constrained                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.033$ | $w = 1/[\sigma^2(F_o^2) + (0.0678P)^2 + 0.126P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.097$               | $(\Delta/\sigma)_{max} < 0.001$                                                    |
| <i>S</i> = 1.06                 | $\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$                                |
| 3357 reflections                | $\Delta \rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$                               |

| 246 parameters                                                 | Extinction correction: SHELXL97,<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 179 restraints                                                 | Extinction coefficient: 0.015 (3)                                                         |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1644 Friedel pairs                                      |
| Secondary atom site location: difference Fourier map           | Flack parameter: -0.02 (8)                                                                |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^{*})$ |
|-------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------|

|      | x            | у            | Z             | $U_{\rm iso}*/U_{\rm eq}$ | Occ. (<1) |
|------|--------------|--------------|---------------|---------------------------|-----------|
| 01   | 0.03169 (6)  | 0.79946 (12) | -0.49156 (15) | 0.0472 (3)                |           |
| N1   | 0.13400 (7)  | 0.64873 (13) | -0.25347 (17) | 0.0422 (3)                |           |
| N6   | 0.11847 (7)  | 0.99970 (13) | -0.14966 (18) | 0.0393 (3)                |           |
| N5   | 0.07161 (7)  | 0.98340 (12) | -0.30460 (17) | 0.0398 (3)                |           |
| C41  | 0.19981 (8)  | 0.84790 (17) | 0.0412 (2)    | 0.0438 (3)                |           |
| H41A | 0.1928       | 0.7556       | 0.0803        | 0.053*                    |           |
| H41B | 0.1976       | 0.9139       | 0.1278        | 0.053*                    |           |
| C42  | 0.26718 (8)  | 0.85404 (16) | 0.0173 (2)    | 0.0445 (3)                | 0.559 (3) |
| S1   | 0.32023 (8)  | 0.71922 (19) | 0.0776 (3)    | 0.0634 (5)                | 0.559 (3) |
| C43  | 0.3784 (4)   | 0.8126 (10)  | 0.0046 (16)   | 0.0627 (17)               | 0.559 (3) |
| H43  | 0.4199       | 0.7770       | 0.0110        | 0.075*                    | 0.559 (3) |
| C44  | 0.3585 (4)   | 0.9386 (11)  | -0.0606 (16)  | 0.0633 (15)               | 0.559 (3) |
| H44  | 0.3831       | 1.0013       | -0.1033       | 0.076*                    | 0.559 (3) |
| C45  | 0.2952 (5)   | 0.9576 (8)   | -0.0527 (14)  | 0.0614 (16)               | 0.559 (3) |
| H45  | 0.2720       | 1.0385       | -0.0938       | 0.074*                    | 0.559 (3) |
| C42' | 0.26718 (8)  | 0.85404 (16) | 0.0173 (2)    | 0.0445 (3)                | 0.441 (3) |
| S1'  | 0.29405 (13) | 0.9970 (2)   | -0.0653 (4)   | 0.0565 (5)                | 0.441 (3) |
| C43' | 0.3687 (5)   | 0.9102 (13)  | -0.047 (2)    | 0.0600 (18)               | 0.441 (3) |
| H43' | 0.4027       | 0.9515       | -0.0798       | 0.072*                    | 0.441 (3) |
| C44' | 0.3743 (7)   | 0.7795 (13)  | 0.018 (2)     | 0.068 (2)                 | 0.441 (3) |
| H44' | 0.4096       | 0.7185       | 0.0342        | 0.082*                    | 0.441 (3) |
| C45' | 0.3165 (5)   | 0.7580 (9)   | 0.0556 (15)   | 0.0654 (19)               | 0.441 (3) |
| H45' | 0.3105       | 0.6757       | 0.1085        | 0.078*                    | 0.441 (3) |
| C3   | 0.06799 (7)  | 0.85162 (14) | -0.36608 (19) | 0.0381 (3)                |           |
| C52  | -0.03960 (8) | 1.0779 (2)   | -0.3428 (2)   | 0.0517 (4)                |           |
| O2   | -0.05226 (8) | 0.97759 (18) | -0.2716 (2)   | 0.0688 (4)                |           |
| N4   | 0.11834 (6)  | 0.78629 (12) | -0.24189 (17) | 0.0396 (3)                |           |
|      |              |              |               |                           |           |

| C4   | 0.14634 (7)   | 0.87926 (14) | -0.11427 (19) | 0.0372 (3)  |
|------|---------------|--------------|---------------|-------------|
| C1   | 0.09964 (10)  | 0.53665 (16) | -0.2186 (2)   | 0.0487 (4)  |
| N3   | 0.17852 (10)  | 0.46323 (18) | -0.3180 (3)   | 0.0668 (5)  |
| N2   | 0.12657 (10)  | 0.42417 (16) | -0.2552 (2)   | 0.0648 (5)  |
| C51  | 0.02666 (8)   | 1.09491 (16) | -0.3740 (2)   | 0.0442 (3)  |
| H51A | 0.0205        | 1.0996       | -0.4943       | 0.053*      |
| H51B | 0.0460        | 1.1823       | -0.3252       | 0.053*      |
| C2   | 0.18161 (9)   | 0.59797 (19) | -0.3193 (2)   | 0.0506 (4)  |
| C11  | 0.04103 (12)  | 0.5476 (2)   | -0.1593 (3)   | 0.0646 (5)  |
| H11A | 0.0328        | 0.6437       | -0.1408       | 0.097*      |
| H11B | 0.0482        | 0.4970       | -0.0559       | 0.097*      |
| H11C | 0.0038        | 0.5093       | -0.2423       | 0.097*      |
| C53  | -0.08696 (15) | 1.1932 (4)   | -0.4126 (5)   | 0.0988 (10) |
| H53A | -0.1278       | 1.1756       | -0.3880       | 0.148*      |
| H53B | -0.0946       | 1.1981       | -0.5322       | 0.148*      |
| H53C | -0.0688       | 1.2798       | -0.3625       | 0.148*      |
| C22  | 0.22523 (12)  | 0.6864 (3)   | -0.3854 (3)   | 0.0695 (6)  |
| H22A | 0.2169        | 0.7825       | -0.3674       | 0.104*      |
| H22B | 0.2169        | 0.6695       | -0.5037       | 0.104*      |
| H22C | 0.2703        | 0.6647       | -0.3283       | 0.104*      |
|      |               |              |               |             |

### Atomic displacement parameters $(Å^2)$

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| 01   | 0.0443 (6)  | 0.0462 (6)  | 0.0463 (7)  | -0.0034 (4) | 0.0053 (5)  | -0.0036 (4) |
| N1   | 0.0450 (6)  | 0.0316 (6)  | 0.0473 (7)  | 0.0032 (5)  | 0.0089 (5)  | -0.0028 (5) |
| N6   | 0.0380 (6)  | 0.0364 (6)  | 0.0433 (7)  | 0.0000 (4)  | 0.0115 (5)  | -0.0026 (5) |
| N5   | 0.0375 (5)  | 0.0363 (6)  | 0.0430 (7)  | 0.0038 (4)  | 0.0074 (5)  | -0.0014 (5) |
| C41  | 0.0437 (7)  | 0.0436 (7)  | 0.0413 (9)  | -0.0009 (6) | 0.0078 (6)  | -0.0003 (6) |
| C42  | 0.0420 (7)  | 0.0429 (7)  | 0.0433 (8)  | 0.0031 (6)  | 0.0038 (6)  | -0.0019 (6) |
| S1   | 0.0519 (5)  | 0.0596 (9)  | 0.0741 (9)  | 0.0193 (6)  | 0.0109 (5)  | 0.0121 (6)  |
| C43  | 0.0359 (17) | 0.068 (4)   | 0.079 (3)   | 0.007 (2)   | 0.0082 (18) | -0.002 (3)  |
| C44  | 0.049 (3)   | 0.064 (4)   | 0.074 (3)   | 0.005 (2)   | 0.013 (2)   | 0.002 (3)   |
| C45  | 0.054 (2)   | 0.057 (3)   | 0.067 (3)   | 0.009 (3)   | 0.0088 (18) | 0.003 (3)   |
| C42' | 0.0420 (7)  | 0.0429 (7)  | 0.0433 (8)  | 0.0031 (6)  | 0.0038 (6)  | -0.0019 (6) |
| S1'  | 0.0475 (7)  | 0.0541 (11) | 0.0683 (9)  | -0.0008 (8) | 0.0174 (6)  | 0.0090 (9)  |
| C43' | 0.043 (3)   | 0.060 (5)   | 0.078 (4)   | 0.010 (2)   | 0.018 (3)   | 0.008 (3)   |
| C44' | 0.053 (3)   | 0.062 (4)   | 0.084 (3)   | 0.013 (3)   | 0.010 (3)   | 0.012 (3)   |
| C45' | 0.062 (3)   | 0.053 (4)   | 0.072 (4)   | 0.013 (3)   | 0.004 (2)   | 0.011 (3)   |
| C3   | 0.0361 (6)  | 0.0366 (6)  | 0.0416 (8)  | -0.0014 (5) | 0.0111 (5)  | -0.0003 (6) |
| C52  | 0.0412 (8)  | 0.0618 (10) | 0.0495 (10) | 0.0039 (7)  | 0.0091 (7)  | -0.0066 (8) |
| 02   | 0.0551 (7)  | 0.0827 (10) | 0.0708 (11) | -0.0165 (7) | 0.0218 (7)  | -0.0037 (7) |
| N4   | 0.0405 (6)  | 0.0312 (5)  | 0.0443 (8)  | 0.0022 (4)  | 0.0074 (5)  | -0.0042 (4) |
| C4   | 0.0357 (6)  | 0.0355 (7)  | 0.0413 (8)  | -0.0022 (5) | 0.0127 (5)  | -0.0026 (5) |
| C1   | 0.0615 (10) | 0.0363 (7)  | 0.0411 (9)  | -0.0047 (6) | 0.0031 (7)  | 0.0001 (6)  |
| N3   | 0.0782 (11) | 0.0488 (8)  | 0.0673 (11) | 0.0169 (8)  | 0.0111 (9)  | -0.0156 (7) |
| N2   | 0.0870 (12) | 0.0369 (7)  | 0.0619 (11) | 0.0018 (7)  | 0.0078 (9)  | -0.0044 (6) |
| C51  | 0.0442 (7)  | 0.0380 (7)  | 0.0484 (9)  | 0.0064 (6)  | 0.0102 (6)  | 0.0020 (6)  |

| C2<br>C11      | 0.0495 (8)<br>0.0683 (12)  | 0.0488 (8)<br>0.0631 (11) | 0.0485 (9)<br>0.0615 (12) | 0.0093 (7)<br>-0.0164 (10) | 0.0062 (7)<br>0.0171 (10)  | -0.0115 (7)<br>0.0037 (9)  |
|----------------|----------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|
| C53<br>C22     | 0.0668 (14)<br>0.0564 (10) | 0.112 (2)<br>0.0831 (14)  | 0.116 (2)<br>0.0750 (15)  | 0.0472 (15)<br>-0.0073 (9) | 0.0246 (15)<br>0.0284 (10) | -0.0128(17)<br>-0.0232(11) |
| Geometric para | umeters (Å, °)             |                           |                           |                            |                            |                            |
| O1—C3          |                            | 1.2114 (19)               | C44'-                     | H44'                       | 0.92                       | 300                        |
| N1—C2          |                            | 1.368 (2)                 | C45'-                     | —H45'                      | 0.9.                       | 300                        |
| N1—N4          |                            | 1.3726 (17)               | C3—                       | N4                         | 1.40                       | 011 (19)                   |
| N1-C1          |                            | 1.376 (2)                 | C52–                      | O2                         | 1.20                       | 01 (3)                     |
| N6-C4          |                            | 1.2939 (19)               | C52–                      | C53                        | 1.49                       | 95 (3)                     |
| N6—N5          |                            | 1.3897 (19)               | C52–                      | -C51                       | 1.50                       | 08 (2)                     |
| N5—C3          |                            | 1.3587 (18)               | N4—                       | C4                         | 1.38                       | 824 (19)                   |
| N5-C51         |                            | 1.4392 (19)               | C1—                       | N2                         | 1.29                       | 98 (3)                     |
| C41—C4         |                            | 1.483 (2)                 | C1—                       | C11                        | 1.40                       | 65 (3)                     |
| C41—C42        |                            | 1.498 (2)                 | N3—                       | C2                         | 1.29                       | 96 (3)                     |
| C41—H41A       |                            | 0.9700                    | N3—                       | N2                         | 1.39                       | 98 (3)                     |
| C41—H41B       |                            | 0.9700                    | C51–                      | -H51A                      | 0.9                        | 700                        |
| C42—C45        |                            | 1.371 (9)                 | C51–                      | -H51B                      | 0.9                        | 700                        |
| C42—S1         |                            | 1.694 (2)                 | C2—                       | C22                        | 1.47                       | 73 (3)                     |
| S1—C43         |                            | 1.766 (8)                 | C11–                      | C11—H11A                   |                            | 500                        |
| C43—C44        |                            | 1.343 (8)                 | C11–                      | C11—H11B                   |                            | 500                        |
| C43—H43        |                            | 0.9300                    | C11–                      | C11—H11C                   |                            | 500                        |
| C44—C45        |                            | 1.375 (13)                | C53–                      | -H53A                      | 0.90                       | 500                        |
| C44—H44        |                            | 0.9300                    | C53–                      | -H53B                      | 0.90                       | 500                        |
| C45—H45        |                            | 0.9300                    | C53–                      | -H53C                      | 0.90                       | 500                        |
| S1'—C43'       |                            | 1.756 (10)                | C22–                      | -H22A                      | 0.90                       | 500                        |
| C43'—C44'      |                            | 1.358 (10)                | C22–                      | -H22B                      | 0.90                       | 500                        |
| C43'—H43'      |                            | 0.9300                    | C22–                      | -H22C                      | 0.90                       | 500                        |
| C44'—C45'      |                            | 1.362 (16)                |                           |                            |                            |                            |
| C2—N1—N4       |                            | 126.30 (14)               | N1—                       | N4—C4                      | 128                        | .05 (12)                   |
| C2—N1—C1       |                            | 107.52 (14)               | N1—                       | N4—C3                      | 121                        | .87 (12)                   |
| N4—N1—C1       |                            | 125.81 (14)               | C4—                       | N4—C3                      | 110                        | .07 (12)                   |
| C4—N6—N5       |                            | 105.52 (12)               | N6—                       | C4—N4                      | 109                        | .64 (13)                   |
| C3—N5—N6       |                            | 113.63 (12)               | N6—                       | C4—C41                     | 124                        | .33 (14)                   |
| C3—N5—C51      |                            | 125.70 (14)               | N4—                       | C4—C41                     | 126                        | .02 (13)                   |
| N6—N5—C51      |                            | 120.09 (13)               | N2—                       | C1—N1                      | 107                        | .86 (18)                   |
| C4—C41—C42     |                            | 113.30 (12)               | N2—                       | C1—C11                     | 127                        | .64 (18)                   |
| C4—C41—H41A    | 4                          | 108.9                     | N1—                       | C1—C11                     | 124                        | .42 (15)                   |
| C42—C41—H41    | IA                         | 108.9                     | C2—                       | N3—N2                      | 108                        | .53 (15)                   |
| C4—C41—H41H    | 3                          | 108.9                     | C1—                       | N2—N3                      | 108                        | .08 (16)                   |
| C42—C41—H41    | lB                         | 108.9                     | N5—                       | C51—C52                    | 113                        | .11 (14)                   |
| H41A—C41—H     | 41B                        | 107.7                     | N5—                       | C51—H51A                   | 109                        | .0                         |
| C45—C42—C41    |                            | 129.1 (4)                 | C52–                      | -C51-H51A                  | 109                        | .0                         |
| C45—C42—S1     |                            | 110.4 (4)                 | N5—                       | C51—H51B                   | 109                        | .0                         |
| C41—C42—S1     |                            | 120.51 (14)               | C52–                      | -C51-H51B                  | 109                        | .0                         |
| C42—S1—C43     |                            | 88.8 (4)                  | H51A                      | —C51—H51В                  | 107                        | .8                         |
| C44—C43—S1     |                            | 115.3 (9)                 | N3—                       | C2—N1                      | 107                        | .94 (18)                   |

| C44—C43—H43        | 122.3        | N3—C2—C22      | 128.11 (17)  |
|--------------------|--------------|----------------|--------------|
| S1—C43—H43         | 122.3        | N1—C2—C22      | 123.88 (17)  |
| C43—C44—C45        | 107.3 (10)   | C1—C11—H11A    | 109.5        |
| C43—C44—H44        | 126.4        | C1—C11—H11B    | 109.5        |
| C45—C44—H44        | 126.4        | H11A—C11—H11B  | 109.5        |
| C42—C45—C44        | 118.2 (8)    | C1—C11—H11C    | 109.5        |
| C42—C45—H45        | 120.9        | H11A—C11—H11C  | 109.5        |
| C44—C45—H45        | 120.9        | H11B—C11—H11C  | 109.5        |
| C44'—C43'—S1'      | 116.6 (12)   | С52—С53—Н53А   | 109.5        |
| C44'—C43'—H43'     | 121.7        | С52—С53—Н53В   | 109.5        |
| S1'—C43'—H43'      | 121.7        | H53A—C53—H53B  | 109.5        |
| C43'—C44'—C45'     | 104.4 (13)   | С52—С53—Н53С   | 109.5        |
| C43'—C44'—H44'     | 127.8        | Н53А—С53—Н53С  | 109.5        |
| C45'—C44'—H44'     | 127.8        | Н53В—С53—Н53С  | 109.5        |
| C44'—C45'—H45'     | 119.2        | C2—C22—H22A    | 109.5        |
| O1—C3—N5           | 131.43 (14)  | C2—C22—H22B    | 109.5        |
| O1—C3—N4           | 127.49 (13)  | H22A—C22—H22B  | 109.5        |
| N5—C3—N4           | 101.07 (12)  | C2—C22—H22C    | 109.5        |
| O2—C52—C53         | 124.4 (2)    | H22A—C22—H22C  | 109.5        |
| O2—C52—C51         | 121.49 (16)  | H22B—C22—H22C  | 109.5        |
| C53—C52—C51        | 114.1 (2)    |                |              |
| C4—N6—N5—C3        | 1.96 (16)    | N5—N6—C4—C41   | -179.87 (13) |
| C4—N6—N5—C51       | 173.77 (13)  | N1—N4—C4—N6    | 179.59 (14)  |
| C4—C41—C42—C45     | 50.9 (6)     | C3—N4—C4—N6    | -1.31 (16)   |
| C4—C41—C42—S1      | -128.07 (16) | N1—N4—C4—C41   | -0.9 (2)     |
| C45—C42—S1—C43     | 0.3 (7)      | C3—N4—C4—C41   | 178.23 (13)  |
| C41—C42—S1—C43     | 179.5 (4)    | C42—C41—C4—N6  | -97.73 (17)  |
| C42—S1—C43—C44     | 0.3 (9)      | C42—C41—C4—N4  | 82.80 (18)   |
| S1—C43—C44—C45     | -0.8 (13)    | C2—N1—C1—N2    | 2.27 (19)    |
| C41—C42—C45—C44    | -180.0 (8)   | N4—N1—C1—N2    | 175.59 (15)  |
| S1—C42—C45—C44     | -0.9 (12)    | C2—N1—C1—C11   | -174.74 (19) |
| C43—C44—C45—C42    | 1.1 (15)     | N4—N1—C1—C11   | -1.4 (3)     |
| S1'-C43'-C44'-C45' | -1.8 (18)    | N1-C1-N2-N3    | -1.1 (2)     |
| N6—N5—C3—O1        | 176.56 (14)  | C11—C1—N2—N3   | 175.8 (2)    |
| C51—N5—C3—O1       | 5.3 (3)      | C2—N3—N2—C1    | -0.5 (2)     |
| N6—N5—C3—N4        | -2.60 (16)   | C3—N5—C51—C52  | 72.9 (2)     |
| C51—N5—C3—N4       | -173.87 (13) | N6-N5-C51-C52  | -97.89 (16)  |
| C2—N1—N4—C4        | -87.1 (2)    | O2—C52—C51—N5  | -2.3 (2)     |
| C1—N1—N4—C4        | 100.82 (19)  | C53—C52—C51—N5 | 179.6 (2)    |
| C2—N1—N4—C3        | 93.89 (19)   | N2—N3—C2—N1    | 1.9 (2)      |
| C1—N1—N4—C3        | -78.2 (2)    | N2—N3—C2—C22   | -175.4 (2)   |
| O1—C3—N4—N1        | 2.3 (2)      | N4—N1—C2—N3    | -175.84 (15) |
| N5—C3—N4—N1        | -178.52 (13) | C1—N1—C2—N3    | -2.57 (19)   |
| O1—C3—N4—C4        | -176.90 (14) | N4—N1—C2—C22   | 1.6 (3)      |
| N5—C3—N4—C4        | 2.31 (15)    | C1—N1—C2—C22   | 174.83 (19)  |
| N5—N6—C4—N4        | -0.33 (15)   |                |              |

### Hydrogen-bond geometry (Å, °)

| D—H···A                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|------------------------------|-------------|--------------|--------------|---------|
| C22—H22B···N2 <sup>i</sup>   | 0.96        | 2.56         | 3.352 (3)    | 140     |
| C41—H41A····N3 <sup>ii</sup> | 0.97        | 2.32         | 3.287 (3)    | 178     |
| C43—H43···O1 <sup>iii</sup>  | 0.93        | 2.49         | 3.414 (10)   | 174     |
| C44'—H44'…O2 <sup>iii</sup>  | 0.93        | 2.46         | 3.162 (14)   | 132     |
| C51—H51A···O2 <sup>iv</sup>  | 0.97        | 2.49         | 3.318 (2)    | 143     |

Symmetry codes: (i) x, -y+1, z-1/2; (ii) x, -y+1, z+1/2; (iii) x+1/2, -y+3/2, z+1/2; (iv) x, -y+2, z-1/2.



